This site uses cookies to help us provide quality services. Using our services, you consent to the use of cookies.

A laboratórium munkatársai által készített publikációk, előadások válogatott listája. A munkatársak által készített további publikációk az MTMT adatbázisban név alapján kereshetők.

Czúni, L., & Rashad, M. (2018). Lightweight Active Object Retrieval with Weak Classifiers. Sensors, 18(3), 801.

Czúni, L., Kürtösi A., Alaya, K., B. (2018) Color based clustering for trunk segmentation, IWSSIP 2018, 25th International Conference on Systems, Signals and Image Processing, Slovenia

Szakonyi, B., Lőrincz, T., Lipovits, Á., & Vassányi, I. (2018). An Expert System Framework for Lifestyle Counselling. eTELEMED 2018, 100.

Czúni, L., & Rashad, M. (2017). The use of IMUs for video object retrieval in lightweight devices. Journal of Visual Communication and Image Representation, 48, 30-42.

Czúni, L., & Rashad, M. (2017, September). The Fusion of Optical and Orientation Information in a Markovian Framework for 3D Object Retrieval. In International Conference on Image Analysis and Processing (pp. 26-36). Springer, Cham.

Czúni, L., & Varga, P. Z. (2017). Time Domain Audio Features for Chainsaw Noise Detection Using WSNs. IEEE Sensors Journal, 17(9), 2917-2924.

Seress, G., Lipovits, Á., Bókony, V., & Czúni, L. (2014). Quantifying the urban gradient: a practical method for broad measurements. Landscape and Urban Planning, 131, 42-50.

Borbély, B. J., Kincses, Z., Vörösházi, Z., Nagy, Z., & Szolgay, P. (2014). A modular test platform for real-time measurement and analysis of myoelectric signals for improved prosthesis control. 14th International Workshop on Cellular Nanoscale Networks and their Applications - CNNA 2014, Notre Dame, USA

Czúni, L., Kiss, P. J., Lipovits, Á., & Gál, M. (2014, October). Lightweight mobile object recognition. In Image Processing (ICIP), 2014 IEEE International Conference on (pp. 3426-3428). IEEE.

Cho, D., Kim, H. M., Czúni, L., & Császár, G. (2010). Apparatus and method for super-resolution enhancement processing, U.S. Patent No. 7,715,658. Washington, DC: U.S. Patent and Trademark Office.

Vörösházi, Z., Nagy, Z., & Szolgay, P. (2009). FPGA-based real time, multichannel emulated-digital retina model implementation. EURASIP Journal on Advances in Signal Processing, 2009(1), 749838.

Czúni, L., & Szirányi, T. (2001). Motion segmentation and tracking with edge relaxation and optimization using fully parallel methods in the cellular nonlinear network architecture. Real-Time Imaging, 7(1), 77-95.

Szirányi, T., Zerubia, J., Czúni, L., Geldreich, D., & Kato, Z. (2000). Image segmentation using Markov random field model in fully parallel cellular network architectures. Real-Time Imaging, 6(3), 195-211.

Copyright